$[HM_2(CO)_{10}]^-$ (M = Cr, Mo, W): Protonated Covalent Metal-Metal

Bonds

By UDO ANDERS and W. A. G. GRAHAM

(Department of Chemistry, University of Alberta, Edmonton, Alberta)

THE special properties of a hydrogen atom bonded to a transition metal have attracted considerable attention during the past several years.¹ Recently, an X-ray-crystallographic determination² of the structure of $[(\pi-C_5H_5)_2Mo_2H(Me_2P)(CO)_4]$ provided evidence for a three-centre metal-hydrogen-metal bond in this molecule. We now describe a convenient synthesis of the anions $[HM_2(CO)_{10}]^-$

² R. J. Doedens and L. F. Dahl, J. Amer. Chem. Soc., 1965, 87, 2576.

(M = Cr, Mo, W), and some observations which suggest a similar novel metal-hydrogen bonding in these species.

Sodium or tetra-alkylammonium salts of the anions $[HM_2(CO)_{10}]^-$ can be rapidly and simply prepared by treating the hexacarbonyls of the sub-Group VI metals with sodium borohydride or tetra-alkylammonium borohydride in diglyme at

¹ J. Chatt, Proc. Chem. Soc., 1962, 318.

CHEMICAL COMMUNICATIONS

temperatures from 60-150°. The salts, e.g., $[Et_4N][HCr_2(CO)_{10}]$ were characterized by a complete elemental analysis. Previously, these anions were obtained³ by a rather difficult route involving the use of liquid ammonia as a solvent, and no spectroscopic evidence as to their structure was provided.

Proton n.m.r. and infrared-spectroscopic studies suggest a structure for the anions in which the proton is equivalently bonded to the two metal atoms, viz., [(OC)₅M(H)M(CO)₅]⁻. The high-resolution infrared spectrum of [HW₂(CO)₁₀] - in the carbonyl region shows three bands centred at 2040(m), 1932(vs), and 1876(s) cm.⁻¹, in accord with a structure of D_{4d} symmetry, like that of $\text{Re}_2(\text{CO})_{10}$, which also has three principal carbonyl stretching absorptions.⁴ The proton resonance spectra for the anions $[HCr_2(CO)_{10}]^-$ and $[HMo_2(CO)_{10}]^-$ show a single sharp band at $\tau 16.7$ and 22.2, respectively. The anion [HW₂(CO)₁₀] - shows a triplet centered at $\tau 22.5$, with a proton-tungsten (¹⁸³W, I=1/2, 14.3%) coupling constant of 41.3 c./sec. The relative band intensities of the triplet components are in accord with equivalent association of the proton with the two tungsten nuclei.⁵ A further noteworthy feature is the long relaxation time for the high-field proton; a value of approximately two minutes was measured for the molybdenum anion [(OC)₅Mo(H)Mo(CO)₅]-. This long relaxation time may be diagnostic for this type of threecentre bonding.

(Received, September 13th, 1965; Com. 579.)

Added in proof: Very shortly after submission of this communication, Dr. R. G. Havter (Shell Development Co., Emeryville, California) reported similar results in a paper presented at the Second International Symposium on Organometallic Chemistry, Madison, Wisconsin. Dr. Hayter reported n.m.r. absorption for $[HCr_2(CO)_{10}]^-$ at $\tau 29.17$; we now confirm his finding and conclude that the $\tau 16.7$ line also observed in our preparations is due to an impurity, perhaps $[HCr(CO)_5]^-$.

 ³ H. Behrens and J. Vogl, Chem. Ber., 1963, 96, 2220; and references cited therein.
⁴ N. Flitcroft, D. K. Huggins, and H. D. Kaesz, Inorg. Chem., 1964, 3, 1123.
⁵ A. Davison, W. McFarlane, L. Pratt, and G. Wilkinson, J. Chem. Soc., 1962, 3653.